THE REGIOCHEMISTRY OF INTRAMOLECULAR N-ALKENYLNITRONE ADDITIONS: PREPARATIVE AND MECHANISTIC IMPLICATIONS

Wolfgang Oppolzer*, Samuel Siles, Roger L. Snowden, Bartholomeus H. Bakker and Martin Petrzilka

Departement de Chimie Organique, Universite de Geneve, CH-1211 Geneve, Switzerland

Summary. The opposite regiochemistry, observed for the reactions 7a \rightarrow 8a and 7d \rightarrow 8d, as compared with additions 7b + 9b, 7c + 9c and 7e + 9e, supports the hypothesis that in the transition state of nitrone-olefin additions the new C,C bond is more advanced than the C,O bond. Further examples **show the superimposition of substituent effects on this intramolecular control.**

Recently we have reported an efficient synthesis of luciduline,' based on the unidirectional 1,3-dipolar addition' 2 + 3 with exclusive attack of the dipole-carbon at the nearer centre - -

of the non-polarized olefinic bond. In contrast, highly selective C,C bond formation with the more remote olefinic carbon was described for the conversion $7 \rightarrow 9$, n=l, R¹=R²=H, R³=Ph.³ We **now present a systematic study of intramolecular N-alkenylnitrone additions with the aim to understand and to predict their regiochemistry.** In **order to exclude secondary steric and electronic factors the thermolyses of straight chain N-3-butenyl-, N-4-pentenyl- and N-5-hexenyl-nitrones 7a** to 7e, containing a "symmetric" olefinic bond, were first investigated (Table 1). The nitrones 7 were readily obtained *in situ* by condensation of the hydroxylamines 6⁴ with aldehydes. In order to avoid the cyclizations of 6 to N-hydroxy pyrrolidines, (e.g. the smooth reaction 6i \rightarrow 10⁵), the hydroxylamines 6 were liberated from their stable hydrogenoxalates at 0° under argon and condensed **immediately with the requisite aldehyde (e.g. by introducing a stream of gaseous formaldehyde at** 0⁰) in toluene in the presence of anhydrous Na₂SO₄; the resulting nitrone solutions were then heated at reflux for several hours. Under these conditions 6a furnished 9a as the sole adduct via the non-isolated nitrone <u>/a</u>, whereas the addition of the higher homologue <u>7b</u> proceeded with completely **reversed regioselectivity. Increasing the distance between the dipole and the dipolarophile by** yet another methylene group led *via* 7c to a 3:1 mixture of 8c and 9c. No interconversion of 8c and 9c occurred on heating the isolated regioisomers in boiling toluene for 3h, thus indicating **the observed regiochemistry to result from kinetic control.6 Opposite regioselectivity was also** displayed by the intramolecular additions of the C- p -nitrophenyl nitrones $\frac{7d}{5}$ \rightarrow $\frac{9d}{2}$ and $\frac{7e}{5}$ \rightarrow $\frac{8e}{5}$.

In order to understand this apparent kinetically controlled,6 bridge length-dependent reversal of regioselectivity' transition state geometries were examined using appropriate models.

Table 1. Intramolecular Cycloadditions of the N-Alkenyl Nitrones 7 formed *in situ* from 6.²

'The hydroxylamines 6 and the products 8 and 9 showed IR, **'H-NMR, and mass spectra in full** agreement with the assigned structures. Mixtures of regioisomers 8 and 9 were analyzed by **GC, 'H-NMR or HPLC and separated either by fractional crystallizat7on of-their hydrogenoxal**ates (c, i), or by chromatography on SiO₂ (f), or by prep. GC (j). ²m.p. of hydrogenoxalate. ^rm.p. of free base. "Heating the dimers of <u>7d</u> in refluxing *o*-dichlorobenzene

Considering coplanarity of the nitrone unit and the first bridge carbon atom' the observed regiochemistry can only be explained on the assumption that the new C,C bond is more developed than the C,O bond in the corresponding transition state.⁹ Thus, comparing the possible orienta-

tions for N-3-alkenyl nitrone additions, C,C bond formation to the nearer olefinic centre C(3) implies a strained transition state A, whereas the exclusively observed C,C(4) bond formation corresponds to the unstrained transition state B." - **With regard to N-4-alkenyl nitrone additions,** both orientations <u>C</u> and <u>D</u> do not exhibit strain. However, the observed preference of the transi**tion state C over D may be ascribed to an entropically favoured 6-ring closure as compared with 7-ring formation. An analogous argument (preferred cyclization to a 7- rather than an B-membered** ring) applies to the less selective cyclization of 7d to 8d. We then studied the competition of **these intramolecular-derived orientational effects with those of dipolarophile substituents." Thus, a phenyl group on the terminal olefinic centre diminishes the predominance of the transi**tion state <u>B</u> over A during the N-3-alkenyl nitrone addition $I_1 \rightarrow 8I_1 + 9I_2$ (1:6), whereas in the higher homologues 7g and 7h both influences cooperate to give exclusively the products 8g and 8h. **Similarly, substituents on the nearer olefinic centre C(4) of N-4-alkenyl nitrones may counter**act the intramolecular favouring of the transition state C over D. Thus, with no terminal olefinic methyl group the regioselectivity is reduced $(7i + 8i + 9i (2:1))$ while a methyl group at C(4) leads already to a reversal of regiochemical control $(7j \rightarrow 8j + 9j (1:8))$, which becomes complete when replaced by a phenyl substituent <u>(/k + 9k</u>). Intramolecular cycloadditions thus **provide a valuable mechanistic tool for the study of orientational substituent effects and in** particular the geometry of transition states which are subject to controversy;¹² moreover, the above findings may prove of value in the synthesis of complex alkaloids.⁴,¹⁰

A&now Zedgements . **We thank the** *Fends National Suisse de la Recherche Scientifique, Smrdoz Ltd,* **Base1 and Giuaudan** *SA,* **Vernier, for financial support of this work.**

REFERENCES

- 1) **W. Oppolzer & M. Petrzilka, J.** *Am. &em. Sot. 98,* **6722 (1976);** *HeZv. 61,* **2755 (1978).**
- 2) **a) For fundamental reviews on intermolecular 1,3-dipolar additions see: R. Huisgen,** *Angew. Chem. 75,* **604, 742 (1963); Int. Ed.** *EngZ. 2, 565, 633 (1963).* **b) For recent reviews on intramolecular versions see: A; Padwa,** *Angew. Chem. g, 131* **(1976)** ; Int. *Ed. Engl. 15,* **123 (1976); W. Oppolzer, ibid. g, 10 (1977); Int. Ed.** *EngZ. 16,* **10 (1977).**
- **3) W.C. Lumma, Jr., J. Am.** *Chem. Sot. 2, 2820* **(1969).**
- **4) The hydroxylamines 6 (m.p. 'C of hydrogenoxalates in parentheses) were synthesized from the aldehydes 4 via rediction of the oximes 5 with NaBH3CN: R.F. Borch, M.D. Bernstein & H.D. Durst, J.** *zrn. Chem. Sot. 93, 2897* **(1971); the aldehydes 4 were prepared in analogy to the following procedures: (i) M. Winter & F. Gautschi,** $\text{\emph{He1v.}}$ 45, 2567 (1962)(6a: 115-117, 6f: 206-209);(ii) G. Saucy & R. Marbet, *Helv*. 50, 2091 (1967)(6b: 117-119, 6i: 121-124, 6j: 111-**112);** (iii) 1-carbon chain-extension of trans-4-hexenal to trans-5-heptene nitrile (6c: 121-**123); (iv) 2-carbon chain-extension:** A.I. **Meyers & J.L. Durandetta, J. Org.** *Chem. SF2021* **(1975) (6g: 166-168),** A.I. **Meyers, A. Nabeya, H.W. Adickes,** I.R. **Politzer, G.R. Malone,** A.C. Kovelesky, R.L. Nolen & R.C. Portnoy, J. Org. Chem. 38, 36 (1973) (6k: 130-132).
- **5) Cyclization of free 6i to 10 already proceeded at 40°/2h with 50% conversion; this reaction** was not further studied after publication of independent analogous findings: H.O. House, **D.T. Manning, D.G. Melillo, L.F. Lee, O.R. Haynes & B.E. Wilkes,** *J. Org. Chem. 4l_, 855* **(1976).**
- **6) The general operation of kinetic control in the examples reported here is further supported** by the non-interconvertibility (GC, TLC or NMR evidence) of the isomer pairs 8f/9f, 8i/9i and <u>8j/9j</u> in boiling toluene within 3h; the isoxazolidines <u>8c, 8i, 9i</u> and <u>9j</u> were recovered **as pure, recrystallized hydrogenoxalates in 84 to 87% yield.**
- **7) This applies also to N-alkenylazomethinimines: W. Oppolzer,** *Z'etrahedron Letters* **1972, 1707.**
- **8) For calculations in support of a planar nitrone geometry see: P. Caramella, R.W. Gandour,** J.A. **Hall, C.G. Deville & K.N. Houk, J.** *Am. Chem. Sot. 99,* **385 (1977); R. Gree & R. Carrie,** *- BUZZ. Sot.* Chim. *France 1975, 1319.*
- **9) For MO-perturbation calculations of bimolecular nitrone-olefin additions indicating the new** C,C bond to develop faster than the C,O bond see: R. Grée, F. Tonnard & R. Carrié, *Bull*. *Sot. Chim. France* **1975, 1325.**
- **10) This reasoning also explains the regioselectivity of intramolecular 5-(2-alkenyl)-pyrrolinel-oxide additions, which serve as key steps in the syntheses of pseudo-tropine and cocaine: J.J. Tufariello &** E.J. **Trybulski, J.** *Chem. Sot. Chem.* Commun. 1973,720; J.J. **Tufariello & G.B. Mullen, J.** *Am. Chem. Sot. 100, 3638* **(1978).**
- **11) For MO-perturbation studies of orientational substituent effects in 1,3-dipolar additions see: K.N. Houk,** *Act. Chem. Res. 8,* **361 (1975) and ref. 12a.**
- **12) a) For arguments in favour of a concerted mechanism for 1,3-dipolar additions see: R.** Huisgen, J. Org. Chem. 41, 403 (1976); b) for a review article supporting a diradical **mechanism see: R.A. Firestone,** *Tetrahedron 33, 3009* **(1977); c) for a discussion of the** dichotomy between calculations of cycloaddition transition state geometries see: **P. Caramella, K.N. Houk & L.N. Domelsmith, J.** *Am. Chem. Sot. 99, 4511 (1977).*

(Received in Germay jl **Au@st 1979)**